Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.

Identifieur interne : 000490 ( Main/Exploration ); précédent : 000489; suivant : 000491

Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.

Auteurs : Jaroslav Snajdr [République tchèque] ; Petra Dobiášová ; Tomáš V Trovsk ; Vendula Valášková ; Alaa Alawi ; Lynne Boddy ; Petr Baldrian

Source :

RBID : pubmed:21539585

Descripteurs français

English descriptors

Abstract

Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.

DOI: 10.1111/j.1574-6941.2011.01123.x
PubMed: 21539585


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.</title>
<author>
<name sortKey="Snajdr, Jaroslav" sort="Snajdr, Jaroslav" uniqKey="Snajdr J" first="Jaroslav" last="Snajdr">Jaroslav Snajdr</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Prague, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Prague</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dobiasova, Petra" sort="Dobiasova, Petra" uniqKey="Dobiasova P" first="Petra" last="Dobiášová">Petra Dobiášová</name>
</author>
<author>
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
</author>
<author>
<name sortKey="Valaskova, Vendula" sort="Valaskova, Vendula" uniqKey="Valaskova V" first="Vendula" last="Valášková">Vendula Valášková</name>
</author>
<author>
<name sortKey="Alawi, Alaa" sort="Alawi, Alaa" uniqKey="Alawi A" first="Alaa" last="Alawi">Alaa Alawi</name>
</author>
<author>
<name sortKey="Boddy, Lynne" sort="Boddy, Lynne" uniqKey="Boddy L" first="Lynne" last="Boddy">Lynne Boddy</name>
</author>
<author>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21539585</idno>
<idno type="pmid">21539585</idno>
<idno type="doi">10.1111/j.1574-6941.2011.01123.x</idno>
<idno type="wicri:Area/Main/Corpus">000497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000497</idno>
<idno type="wicri:Area/Main/Curation">000497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000497</idno>
<idno type="wicri:Area/Main/Exploration">000497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.</title>
<author>
<name sortKey="Snajdr, Jaroslav" sort="Snajdr, Jaroslav" uniqKey="Snajdr J" first="Jaroslav" last="Snajdr">Jaroslav Snajdr</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Prague, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Prague</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dobiasova, Petra" sort="Dobiasova, Petra" uniqKey="Dobiasova P" first="Petra" last="Dobiášová">Petra Dobiášová</name>
</author>
<author>
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
</author>
<author>
<name sortKey="Valaskova, Vendula" sort="Valaskova, Vendula" uniqKey="Valaskova V" first="Vendula" last="Valášková">Vendula Valášková</name>
</author>
<author>
<name sortKey="Alawi, Alaa" sort="Alawi, Alaa" uniqKey="Alawi A" first="Alaa" last="Alawi">Alaa Alawi</name>
</author>
<author>
<name sortKey="Boddy, Lynne" sort="Boddy, Lynne" uniqKey="Boddy L" first="Lynne" last="Boddy">Lynne Boddy</name>
</author>
<author>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
</author>
</analytic>
<series>
<title level="j">FEMS microbiology ecology</title>
<idno type="eISSN">1574-6941</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (growth & development)</term>
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (metabolism)</term>
<term>Basidiomycota (physiology)</term>
<term>Biomass (MeSH)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (analysis)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (metabolism)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (physiology)</term>
<term>Hyphae (growth & development)</term>
<term>Mycelium (physiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Xylosidases (analysis)</term>
<term>Xylosidases (metabolism)</term>
<term>alpha-Glucosidases (analysis)</term>
<term>alpha-Glucosidases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries (croissance et développement)</term>
<term>Basidiomycota (croissance et développement)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Basidiomycota (physiologie)</term>
<term>Biomasse (MeSH)</term>
<term>Cellulose 1,4-beta-cellobiosidase (analyse)</term>
<term>Cellulose 1,4-beta-cellobiosidase (métabolisme)</term>
<term>Champignons (croissance et développement)</term>
<term>Champignons (physiologie)</term>
<term>Hyphae (croissance et développement)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycelium (physiologie)</term>
<term>Sol (composition chimique)</term>
<term>Xylosidases (analyse)</term>
<term>Xylosidases (métabolisme)</term>
<term>alpha-Glucosidase (analyse)</term>
<term>alpha-Glucosidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>Xylosidases</term>
<term>alpha-Glucosidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Xylosidases</term>
<term>alpha-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bactéries</term>
<term>Basidiomycota</term>
<term>Champignons</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
<term>Basidiomycota</term>
<term>Fungi</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>Xylosidases</term>
<term>alpha-Glucosidases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Xylosidases</term>
<term>alpha-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Champignons</term>
<term>Mycelium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Fungi</term>
<term>Mycelium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Microbiologie du sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">21539585</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1574-6941</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>78</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>FEMS microbiology ecology</Title>
<ISOAbbreviation>FEMS Microbiol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.</ArticleTitle>
<Pagination>
<MedlinePgn>80-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1574-6941.2011.01123.x</ELocationID>
<Abstract>
<AbstractText>Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.</AbstractText>
<CopyrightInformation>© 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Snajdr</LastName>
<ForeName>Jaroslav</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dobiášová</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Větrovský</LastName>
<ForeName>Tomáš</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Valášková</LastName>
<ForeName>Vendula</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alawi</LastName>
<ForeName>Alaa</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boddy</LastName>
<ForeName>Lynne</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldrian</LastName>
<ForeName>Petr</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEMS Microbiol Ecol</MedlineTA>
<NlmUniqueID>8901229</NlmUniqueID>
<ISSNLinking>0168-6496</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D014995">Xylosidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.20</RegistryNumber>
<NameOfSubstance UI="D000520">alpha-Glucosidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.37</RegistryNumber>
<NameOfSubstance UI="C026579">exo-1,4-beta-D-xylosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.91</RegistryNumber>
<NameOfSubstance UI="D043366">Cellulose 1,4-beta-Cellobiosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043366" MajorTopicYN="N">Cellulose 1,4-beta-Cellobiosidase</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014995" MajorTopicYN="N">Xylosidases</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000520" MajorTopicYN="N">alpha-Glucosidases</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21539585</ArticleId>
<ArticleId IdType="doi">10.1111/j.1574-6941.2011.01123.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République tchèque</li>
</country>
<region>
<li>Bohême centrale</li>
</region>
<settlement>
<li>Prague</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Alawi, Alaa" sort="Alawi, Alaa" uniqKey="Alawi A" first="Alaa" last="Alawi">Alaa Alawi</name>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
<name sortKey="Boddy, Lynne" sort="Boddy, Lynne" uniqKey="Boddy L" first="Lynne" last="Boddy">Lynne Boddy</name>
<name sortKey="Dobiasova, Petra" sort="Dobiasova, Petra" uniqKey="Dobiasova P" first="Petra" last="Dobiášová">Petra Dobiášová</name>
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
<name sortKey="Valaskova, Vendula" sort="Valaskova, Vendula" uniqKey="Valaskova V" first="Vendula" last="Valášková">Vendula Valášková</name>
</noCountry>
<country name="République tchèque">
<region name="Bohême centrale">
<name sortKey="Snajdr, Jaroslav" sort="Snajdr, Jaroslav" uniqKey="Snajdr J" first="Jaroslav" last="Snajdr">Jaroslav Snajdr</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000490 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000490 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21539585
   |texte=   Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21539585" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020